
DATA STRUCTURE FOR TRIANGULATIONS

LONG CHEN

CONTENTS

1. Basic data structure 1
2. Auxiliary data structure for 2-D triangulation 2
3. Auxiliary data structure for 3-D triangulation 5

We shall discuss the data structure to represent triangulations and facilitate the mesh
adaptation procedure. There is a dilemma for the data structure in the implementation level.
If more sophisticated data structure is used to easily traverse in the mesh, for example, to
save the star of vertices or edges, it will simplify the implementation of most adaptive
finite element subroutines. On the other hand, if the triangulation is changed, for example,
a triangle is bisected, one has to update those data structure which in turn complicates the
implementation.

Our solution is to maintain two basic data structure and construct auxiliary data structure
inside each subroutine when it is necessary. It is not optimal in terms of the computational
cost. But it will benefit the interface of accessing subroutines, simplify the coding and save
the memory. Also as we shall see soon, the auxiliary data structure can be constructed by
sparse matrixlization efficiently. This is an example we scarify a small factor of efficiency
to gain the simplicity.

1. BASIC DATA STRUCTURE

The matrices node(1:N,1:d) and elem(1:NT,1:d+1) are used to represent a d-
dimensional triangulation embedded in Rd, where N is the number of vertices and NT
is the number of elements. These two matrices represent two different structures of a
triangulation: elem for the topology and node for the geometric embedding.

The matrix elem represents a set of abstract simplices. The index set {1, 2, · · · , N}
is called the global index set of vertices. Here a vertex is thought as an abstract entity.
By definition, elem(t,1:d+1) are the global indices of d + 1 vertices which form the
abstract d-simplex t. Note that any permutation of vertices of t will represent the same
abstract simplex.

The matrix node gives the geometric realization of the simplicial complex. For exam-
ple, for a 2-D triangulation, node(k,1:2) contain x- and y-coordinates of the k-th node.
We shall always order the vertices of a simplex such that the signed volume is positive.
That is in 2-D, three vertices of a triangle is ordered counter-clockwise and in 3-D, the
ordering of vertices follows the right-hand rule. Note that an even permutation of vertices
is still allowed to represent the same element.

Date: Created Oct 2008. Latest update January 3, 2016.
1



2 LONG CHEN

As an example, node and elem matrices to represent the triangulation of the L-shape
domain Ω = (−1, 1)× (−1, 1)\([0, 1]× [0,−1]) are given in the Figure 1 (a) and (b).

1

234

5

6 7

8

1

2

3

4

5

6

8 LONG CHEN

1

234

5

6 7

8

1

2

3

4

5

6

FIGURE 3. A triangulation of a L-shape domain.

1
2
3
4
5
6
7
8

1 0
1 1
0 1
-1 1
-1 0
-1 -1
0 -1
0 0

1 2
node

1
2
3
4
5
6

1 2 8
3 8 2
8 3 5
4 5 3
7 8 6
5 6 8

1 2 3
elem

1
2
3
4
5
6
7
8
9

10
11
12
13

1 2
1 8
2 3
2 8
3 4
3 5
3 8
4 5
5 6
5 8
6 7
6 8
7 8

1 2
edge

TABLE 1. node,elem and edge matrices for the L-shape domain in Figure 3.

3.3.2. Auxiliary data structure for 2-D triangulation. We shall discuss how to extract the topological
or combinatorial structure of a triangulation by using elem array only. The combinatorial structure will
benefit the finite element implementation.

edge. We first complete the 2-D simplicial complex by constructing the 1-dimensional simplex. In the
matrix edge(1:NE,1:2), the first and second rows contain indices of the starting and ending points.
The column is sorted in the way that for the k-th edge, edge(k,1)<edge(k,2). The following code
will generate an edge matrix.

1 totalEdge = sort([elem(:,[1,2]); elem(:,[1,3]); elem(:,[2,3])],2);

2 [i,j,s] = find(sparse(totalEdge(:,2),totalEdge(:,1),1));

3 edge = [j,i]; bdEdge = [j(s==1),i(s==1)];

The first line collect all edges from the set of triangles and sort the column such that totalEdge(k,1)
<totalEdge(k,2). The interior edges are repeated twice in totalEdge. We use the summation
property of sparse command to merge the duplicated indices. The nonzero vector s takes values 1 (for
boundary edges) or 2 (for interior edges). We then use find to return the nonzero indices which forms

FIGURE 1. (Left) is a triangulation of the L-shape domain (−1, 1) ×
(−1, 1)\([0, 1] × [0,−1]) and (Right) is its representation using node

and elem matrices.

2. AUXILIARY DATA STRUCTURE FOR 2-D TRIANGULATION

We discuss ways to extract the combinatorial structure of a triangulation by using elem
array only. The combinatorial structure will benefit the implementation of finite element
methods.

edge. We first complete the 2-D simplicial complex represented by elem by constructing
1-dimensional simplices, i.e., edges of the triangulation. We use edge(1:NE,1:2) to
store indices of the starting and ending points of edges. The column is sorted in a way
such that for the k-th edge, edge(k,1)<edge(k,2). The following code will generate an
edge matrix.

1 totalEdge = sort([elem(:,[2,3]); elem(:,[3,1]); elem(:,[1,2])],2);

2 [i,j,s] = find(sparse(totalEdge(:,2),totalEdge(:,1),1));

3 edge = [j,i];

4 bdEdge = [j(s==1),i(s==1)];

The first line collects all edges from the set of triangles and sorts the column such that
totalEdge(k,1) <totalEdge(k,2). The interior edges are repeated twice in totalEdge.
We use the summation property of sparse command to merge the duplicated indices. The
nonzero vector s takes value 1 (for boundary edges) or 2 (for interior edges). We then use
find to return the nonzero indices which forms the edge set. We can also find the bound-
ary edges using the subset of indices pair corresponding to the nonzero value 1. Note that
we switch the order of (i,j) in line 3 to sort the edge set row-wise since the output of
find(sparse) is sorted column-wise.

To construct edge matrix only, the above 3 line code can be further simplified to one
line:

edge = unique(sort([elem(:,[2,3]); elem(:,[3,1]); elem(:,[1,2])],2),’rows’);

The unique function provides more functionality which we shall explore more later. How-
ever, numerical tests show that the running time of unique is around 3 times of the com-
bination find(sparse).



DATA STRUCTURE FOR TRIANGULATIONS 3

Now we have three types of simplices for a 2-D simplicial complex:

0-simplex: {1,2,...,N}; 1-simplex: edge; 2-simplex: elem.

We shall discuss data structure to efficiently traverse in these simplices. These data struc-
tures use mainly the combinatorial property of a mesh, i.e., using the matrix elem. We
do use some geometric properties of the 2-D planar triangulation. For example, we as-
sume each edge is shared by at most two triangles, which may not hold for general abstract
simplicial complex.

Following [?], we shall use the name convention a2b to represent the link form a to b.
This link is usually the map from the local index set to the global index set. Throught out
this paper, we denote the number of node, elem, and edge by

N = size(node,1); NT = size(elem,1); NE = size(edge,1);

node and elem. The elem matrix, by the definition, is a link from triangles to vertices,
i.e., elem is elem2node. The link from vertices to triangles, namely given a vertex v, to
find all triangles containing v, is stored in the sparse matrix:

t2v = sparse([1:NT,1:NT,1:NT], elem, 1, NT, N);

The NT× Nmatrix t2v is the incidence matrix between triangles and vertices. t2v(t,i)=1
means the i-th node is a vertex of triangle t. If we look at t2v column-wise, the nonzero in
the i-th column of t2v(:,i) will give all triangles containing the i-th node. Since sparse
matrix is stored column-wise, the star of the i-th node can be efficiently found by

nodeStar = find(t2v(:,i));

1
2
3
4
5
6

1 1 0 0 0 0 0 1
0 1 1 0 0 0 0 1
0 0 1 0 1 0 0 1
0 0 1 1 1 0 0 0
0 0 0 0 0 1 1 1
0 0 0 0 1 1 0 1

1 2 3 4 5 6 7 8
t2v

1
2
3
4
5
6

2 1 1
1 2 3
4 6 2
3 4 4
6 5 5
5 3 6

1 2 3
neighbor

TABLE 1. t2v and neighbor matrices for the L-shape domain in Fig-
ure 1.

The cardinality of the node star, called valence, can be computed by the accumarray
command. The following one line code

valence = accumarray(elem(:),ones(3*NT,1),[N 1]);

is equivalent to the double loop:

1 for t=1:NT

2 for i=1:3

3 valence(elem(t,i)) = valence(elem(t,i))+1;

4 end

5 end

When NT is big, the for t=1:NT loop is not efficient in MATLAB. As we mentioned
early, sparse and accumarray are two most commonly used commands to replace the
for loop.



4 LONG CHEN

node and edge. The edge matrix, by the definition, is a link from edges to vertices.
Sometimes we know only vertices of an edge, say vi, vj , and want to find the edge using
these two nodes. Namely an index map from (vi, vj)→ k such that edge(k,:)=[vi vj]

or [vj vi]. We shall construct such mapping by the sparse matrix
node2edge = sparse(edge(:,[1,2]),edge(:,[2,1]),[1:NE,1:NE],N,N);

Here we repeat the edge matrix with the reverse order in the indices set to allow i<j or
j<i such that if [i,j]=edge(k,:) then node2edge(i,j)=node2edge(j,i)=k. Thus
node2edge is a symmetric matrix.

There is another way to construct the link node → edge using the product of sparse
matrices. Let us introduce the incidence matrix between edges and vertices as

e2v = sparse([1:NE,1:NE],[edge(:,1);edge(:,2)],1,NE,N);

The sparse matrix e2v is of dimension NE×N such that e2v(e,v)=1 if v is a vertex of e.
Then e2v(:,i) or e2v(:,j) contains all edges using the vertex i or j, respectively. The
intersection of e2v(:,i)∩e2v(:,j) is the edge using i,j as two nodes, which can be
found by

find(e2v(:,i).*e2v(:,j));

edge and elem. The edge matrix is constructed using the element matrix. But there is
no direct link between edges and triangles. One indirect link is through the path elem→
node→ edge. For example, node2edge(elem(t,2),elem(t,3)) will give the index
of the edge composed by the second and third vertices of the triangle t.

Since the access of a sparse matrix is not efficient especially in a large loop, we shall
form a direct link elem → edge. We label three edges of a triangle such that the i-th
edge is opposite to the i-th vertex. We define the matrix elem2edge as the map of local
index of edges in each triangle to its global index. The following 3 line code will construct
elem2edge using more output from unique function.

1 totalEdge = sort([elem(:,[2,3]); elem(:,[3,1]); elem(:,[1,2])],2);

2 [edge, i2, j] = unique(totalEdge,’rows’);

3 elem2edge = reshape(j,NT,3);

Line 1 collects all edges element-wise. The size of totalEdge is thus 3NT×2. By the
construction, there is a natural index mapping from totalEdge to elem. In line 2, we
apply unique function to obtain the edge matrix. The output index vectors i2 and j

contain the index mapping between edge and totalEdge. Here i2 is a NE×1 vector to
index the last (2-nd in our case) occurrence of each unique value in totalEdge such that
edge = totalEdge(i2,:), while j is a 3NT×1 vector such that totalEdge = edge(j,:).
(Try help unique in MATLAB to learn more examples.) Then using the natural index
mapping from totalEdge to elem, we reshape the 3NT×1 vector j to a NT×3 matrix
which is elem2edge.

We then define a NE×4matrix edge2elem such that edge2elem(k,1) and edge2elem(k,2)
are two triangles sharing the k-th edge for an interior edge. If the k-th edge is on the bound-
ary, then we set edge2elem(k,1) = edge2elem(k,2). Furthermore, we shall record
the local indices in edge2elem(k,3:4) such that elem2edge(edge2elem(k,1),edge2elem(k,3))=k.
Similarly edge2elem(k,4) is the local index of k-th edge in edge2elem(k,2).

To construct edge2elem matrix, we need to find out the index map from edge to elem.
The following code is a continuation of the code constructing elem2edge.

1 i1(j(3*NT:-1:1)) = 3*NT:-1:1; i1=i1’;

2 k1 = ceil(i1/NT); t1 = i1 - NT*(k1-1);

3 k2 = ceil(i2/NT); t2 = i2 - NT*(k2-1);



DATA STRUCTURE FOR TRIANGULATIONS 5

4 edge2elem = [t1,t2,k1,k2];

The code in line 1 uses j to find the first occurrence of each unique edge in the totalEdge.
In MATLAB, when assign values using an index vector with duplication, the value at the
repeated index will be the last one assigned to this location. Obvious j contains duplication
of edge indices. For example, j(1)=j(2)=4which means totalEdge(1,:)=totalEdge(2,:)=edge(4,:).
We reverse the order of j such that i1(4)=1 which is the first occurrence.

Using the natural index mapping from totalEdge to elem, for an index i between
1:N, the formula k=ceil(i/NT) computes the local index of i-th edge, and t=i-NT*(k-1)
is the global index of the triangle which totalEdge(i,:) belongs to. The edge2elem is
just composed by t1,t2,k1 and k2.

elem and elem. We use the matrix neighbor(1:NT,1:3) to record the neighboring
triangles for each triangle. By definition, neighbor(t,i) is opposite to the i-th vertex of
the t-th triangle. If i is opposite to the boundary, then we set neighbor(t,i)=t. Using
the index map between edge and elem, we can easily form the neighbor matrix by the
following 2 lines of code.

1 ix = (i1 ˜= i2);

2 neighbor = accumarray([[t1(ix),k1(ix)];[t2,k2]],[t2(ix);t1],[NT 3]);

In line 1, to avoid the duplication in the index array, we find the index set of interior edges
by noting that if e is a boundary edge, then i1(e)=i2(e). Since t1 and t2 share the
same edge, we form the neighbor matrix by using t1,k1 and t2,k2 as indices set and
t2,t1 as the value in line 2.

We summarize the construction of these auxiliary data structures in the subroutine
auxstructure.m.

1 function [neighbor,elem2edge,edge2elem,edge,bdEdge]=auxstructure(elem)

2 totalEdge = sort([elem(:,[2,3]); elem(:,[3,1]); elem(:,[1,2])],2);

3 [edge, i2, j] = unique(totalEdge,’rows’);

4 NT = size(elem,1);

5 elem2edge = reshape(j,NT,3);

6 i1(j(3*NT:-1:1)) = 3*NT:-1:1; i1=i1’;

7 k1 = ceil(i1/NT); t1 = i1 - NT*(k1-1);

8 k2 = ceil(i2/NT); t2 = i2 - NT*(k2-1);

9 ix = (i1 ˜= i2);

10 neighbor = accumarray([[t1(ix),k1(ix)];[t2,k2]],[t2(ix);t1],[NT 3]);

11 bdEdge = edge((i1 == i2),:);

12 edge2elem = [t1,t2,k1,k2];

3. AUXILIARY DATA STRUCTURE FOR 3-D TRIANGULATION

Most codes discussed for 2-D triangulations can be generalized to 3-D triangulations
in a straightforward way. Due to the page limit, we pick up the following important data
structures to explain in detail.

elem and face. The face matrix, which represents the 2-D simplex, can be generated
by the unique function of all element-wise faces. The link elem2face, faceStar, and
neighbor can be constructed similarly using the index map. We list auxstructure3.m
below and skip the explanation.

1 function [neighbor,elem2face,face2elem,face,bdFace] = auxstructure3(elem)

2 totalFace = [elem(:,[2 4 3]);elem(:,[1 3 4]);elem(:, [1 4 2]);elem(:, [1 2 3])];



6 LONG CHEN

3 [face, i2, j] = unique(sort(totalFace,2),’rows’);

4 NT = size(elem,1);

5 elem2face = reshape(j,NT,4);

6 i1(j(4*NT:-1:1)) = 4*NT:-1:1; i1 = i1’;

7 k1 = ceil(i1/NT); t1 = i1 - NT*(k1-1);

8 k2 = ceil(i2/NT); t2 = i2 - NT*(k2-1);

9 ix = (i1 ˜= i2);

10 neighbor = accumarray([[t1(ix),k1(ix)];[t2,k2]],[t2(ix);t1],[NT 4]);

11 bdFace = face((i1 == i2),:);

12 face2elem = [t1,t2,k1,k2];

elem and edge. The edge matrix and elem2edge can be generated using unique com-
mands as in the 2-D case.

1 totalEdge = sort([elem(t,[1 2]); elem(t,[1 3]); elem(t,[1 4]); ...

2 elem(t,[2 3]); elem(t,[2 4]); elem(t,[3 4])],2);

3 [edge, i2, j] = unique(totalEdge,’rows’);

4 elem2edge = reshape(j,NT,6);

We now discuss the construction of edgeStar. This link from edge to elem is impor-
tant since the 3-D local mesh refinement is always cutting edges. Unlike the 2-D case, we
cannot use a NE×2 dense matrix for edgeStar since the number of elements sharing one
edge varies a lot. Again we shall resort to the sparse matrix.

1 t2v = sparse([1:NT,1:NT,1:NT,1:NT], elem(1:NT,:), 1, NT, N);

2 nodeStar1 = t2v(1:NT,edge(:,1));

3 nodeStar2 = t2v(1:NT,edge(:,2));

4 edgeStar = nodeStar1.*nodeStar2;

The elements containing an edge are characterized as the intersection of two stars of the
ending nodes of this edge. The first line generates the incidence matrix t2v. Line 2 and
3 extract columns from t2v. The intersection is found by the Hadamard product of two
sparse matrix nodeStar1 and nodeStar2. The resulting sparse matrix edgeStar is a
NT×NE sparse matrix and find(edgeStar(:,i)) will give the element indices contain-
ing the i-th edge.

In the construction of elem2edge and edgeStar, we use Hadamard product of sparse
matrices to find the quantity associated with two index sets. This technique is crucial in
3-D refinement.


	1. Basic data structure
	2. Auxiliary data structure for 2-D triangulation
	3. Auxiliary data structure for 3-D triangulation

